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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space -_
Center and locai industry to actively support research in'the computing and ::: _°:

information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science res_n_b_iities. JSC agreed and entered into :_
a-tliree-year cooperative agreement with UH-Clear Lake beginning in May, 198_;, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and edu_tional facilities are shar_

The mission of RiCIS is to conduct, coordinate and disseminate

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear _ ::_ :

Lake, the mission is being impiement_ through interdisciplinary involvemen t of _ _:
faculty and students from eacho_ the four schoolsi Bus_ness, Educatlon, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear _ _: .

Lake establishes relationships with other universities and research organizations, ! ]!
having common research interests, tO provide additional sources of expertise to _: '
conduct needed research.

A major role of RICIS is. to_find the_b__ t match of sponsors, researchers and -_--
research objectives to advance knowledge in the computing and information _
sciences. Working jointly-wf(h NASA/J_C, RiCiS advises on research n_, ==_...1,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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m ABSTRACT

The issue of training high performance skills is of increasing concern.

These skills include tasks such as driving a car, playing the piano, and

flying an aircraft. Traditionally, the training of high performance skills

has been accomplished through the use of expensive, high-fidelity, 3-D

simulators and/or on-the-job training using the actual equipment. Such an

approach to training is quite expensive. This paper describes the design,

implementation, and deployment of an intelligent tutoring system developed

for the purpose of studying the effectiveness of skill acquisition using

lower-cost, lower-physlcal-fidelity, 2-D simulation. Preliminary

experimental results are quite encouraging, indicating that intelligent

tutoring systems are a cost-effective means of training high performance
skills.
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I INTRODUCTION

The Console Operations Tutor was fielded to the Armstrong Laboratory
Human Resources Directorate (HRD) at Brooks Air Force Base and to

NASA/Johnson Space Center in June of 1990. The primary goal of this system

was not to field another intelligent tutoring system, but rather to develop

a psychological research platform for investigating issues in training a
class of tasks referred to as "high performance." High performance skills

are physically-oriented tasks that can be performed without much cognitive

elaboration (Regian and Shute, 1988). Driving a car is a high performance
task and, while initially driving requires a high degree of concentration,
with practice the skill no longer consumes much thought. Development of

such an intelligent tutoring system, where artificial intelligence-based
techniques are used to design and implement a computer system to support

research in human learning, is a natural and important means of extending
the interdisciplinary approach that is essential to progress in both

fields, artificial intelligence and human psychology.

The Console Operations Tutor has been used extensively as a research

tool at the Armstrong Laboratory Human Resources Directorate, Brooks AFB
and at NASA/Johnson Space Center. The results suggest that a modified

apprenticeship strategy for training high performance skills effectively
allows for transfer of the skill from a 2-D computer environment to the

actual 3-D device. This indicates that less expensive, 2-D tutoring
systems can be used to deliver some of the training currently performed on
large, expensive, high fidelity, 3-D simulators. The following sections

review the rationale for the development of, and approach used in, the
Console Operations Tutor, including the instructional strategy used by the

tutoring system, the components of the tutoring system, and the results of
fielding the system to conduct psychological research.

m

i.I The Need For ICAI Systems

Technological advances during the last several decades have resulted
in the automation of many menial tasks. As a result, need has arisen for a
more skilled workforce capable of running, monitoring, and maintaining

these automated systems. Though such jobs may be based on a general
knowledge of some problem solving area, such as fluid flow or electronics,

the tasks that must be performed hinge on very specific knowledge about the
specific processes and devices employed at a given location. As a result,

though an ........... may have obtained an education in some engineering
discipline, a need still exists for very specialized training in the given
job tasks. To further complicate the training picture, the average

American worker is changing jobs more frequently than in the past. _ith

each job change, there is potentially a need for different, specialized
training.

Job proficiency often requires a wide range of knowledge and skill

types, including declarative knowledge, procedural knowledge, and
psychomotor skill. For example, to monitor a complex system, an individual

needs to have a general understanding of the principles behind the
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functioning of the system as well as specific knowledge of the particular
device. In addition, the individual needs to have the skills necessary for

manipulating and controlling the devices used to collect information on the

performance of the system. Thus, both cognitively-orlented knowledge and

physically-orlented skills are required for job proficiency. A large

literature exists regarding which instructional approaches are optimal for

the various categories of knowledge and skill.

Traditionally, training of knowledge-intensive tasks has used an

approach that relies on lectures and reading. A single human instructor, a

number of students, and a set of written material, one set for each

student, is a typical classroom scenario. The students listen to lectures,

read books and documents, ask questions of the teacher, and pass a more or

less verbally-oriented exam at the end to demonstrate proficiency. This is

the training approach that has been used in the traditional education

system for centuries. It is also the approach used for many of the

cognitlvely-orlented tasks that such organizations as NASA and the U.S.
Air Force must train.

Training of physically-oriented skills has traditionally been

approached through apprenticeships, high-fidelity, three-dimensional

mock-ups, and/or on-the-job training. Students may first acquire some

preliminary knowledge about the task(s) from a lecture or reading material,

but the ultimate training is actual execution of the task, either In the

real or a simulated environment. The student Is repeatedly run through

trials on the task, monitored and directed as-needed by a human instructor,

until the required level of proficiency is attained. This Is the training

approach that has been used throughout history for trades such as

sllversmithery and stonemasonry. It is also the methodolo_5, employed by

NASA and the U.S. Alr Force for training the physically-oriented tasks

performed by astronauts and aircraft pilots.

A key attribute of both of these approaches to training is their

human-lntensive nature. No matter what knowledge or skill is trained, a

human instructor is the key element to the process. The idea that teaching

is best accomplished by tailoring instruction to individual students is

both ancient and ubiquitous among instructional threorlsts. Corno and Snow

(1985) found the idea detailed in the fourth century B.C. Chinese Xue Ji,

in the ancient Hebrew Haggaday of Passover, and In the first century Roman

De Institutlone Oratorla. Today the basic idea still forms the core of

several important streams of research on instruction. The promise of
individualized instruction is the basis of research on mastery learning

(e.g., Bloom, 1956; Carroll, 1963; Cohen, Kulik, and Kullk, 1982),

aptitude-treatment interactions (e.g., Corno and Snow, 1985; Cronback and

Snow, 1977; Shute, in press), apprenticeship learning (gott, 1988; Collins,

Brown, and Newman, 1987), and intelligent tutoring systems (e.g., Sleeman

and Brown, 1982; Lewis, McArthur, Stasz, and Zmuidzinas,1990, goolf, 1987).

The idea also has strong empirical support. A consistent finding is that

when using traditional stand-up instruction, other things being equal,

smaller class sizes produce superior learning outcomes (Bloom, 1984). The

most common interpretation of this result is that smaller classes enable

instructors to be more aware of, and responsive to, the needs of individual

students.

This human-intensive approach to training makes it very expensive.

m
w

Ill

=

W

I

g

n

I

J

I

W

m

m
m

W



Page 3

Organizations such as the U.S. Air Force and NASA, as well as private

industry, can not afford such expense, especially when coupled with
increasing training demands. As a result of the increasing expense and the

improvement in computer capabilities, the past couple of decades have seen
an evolution in computer-aided instruction (CAI). CAI does not remove the

human instructor from the training loop, but rather it seeks to enhance the
human instructor and reduce the instructor's workload. At the same time,

it provides consistent, appropriate, and individualized instruction.

1.2 Development Of ICAI Systems

w

Initially, CAI systems were nothing more than computer-operated

page-turners (Arons, 1984). Then systems basically allowed the student to
read text on a computer screen, instead of in a book, on a self-paced
basis. Over time, conventional CAI expanded into the use of conditional

branching (based on student performance) to individualize the instruction,
and often included realistic, visually-oriented simulations. These

simulations could be either two-dimensional, using technologies such as

computer graphics, interactive videodisk (IVD), or digital video
interactive (DVl), or three dimensional, relying predominantly on large,

high-fidelity, three-dlmensional mock-ups of the environment to be trained.
The courseware for such systems is still designed and administered, and

student performance is still evaluated, by human instructors in order to
determine the next step in the training process. Thus, conventional CAI
has removed some of the workload from the instructor, while still providing

students with many of the benefits of one-on-one teaching.

Intelligent computer-aided instruction (ICAI) takes the individualized

instruction one step further, providing the computer system with more
adaptive and flexible responses to student performance. In addition, ICAI

systems, often referred to as intelligent tutoring systems (ITS's) (Sleeman
and Brown, 1982), maintain an explicit model of the expertise to be
trained, of the student being trained, and of the instructional strategy

employed In providing trials, feedback, and remediation to the student.
ICAI systems involve the encoding of the knowledge on which decisions

concerning a student's training session should proceed, rather than the
explicit encoding of the decisions themselves (Wenger, 1987). These
"intelligent" training systems have usually been developed for

cognitively-oriented tasks, such as Anderson's Lisp Tutor (Anderson,
Farell, and Sauers, 1984), Brown and Button's SOPHIE system for electronic

diagnosis (Brown, Burton, and deKleer, 1982), Carbonell and Collins'
SCHOLAR system for South American geography (Carbonell, 1970), and Woolf

and McDonald's MENO-TlrroR for diagnosing non-syntactic bugs in computer

programs (Woolf and McDonald, 1985).

As a result, ICAI, or ITS's, can be regarded from the viewpoint of

degree of individualization in training as simply an evolutionary change
from the original CAI work (Regian, 1989). However, from the viewpoint, of

designing and implementing software systems, ICAI systems appear
revolutionary (Dede and Swigger 1987). In order to obtain the
individualized instruction, a different approach to computer programming

must be used. In conventional programming for CAI systems, the actual

w
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decisions are encoded, while in Al-based programming for ITS's the

knowledge required to make those decisions is encoded. The evolutionary
aspects of a move from CAI to ICAI allow one to conceive of building an ITS

to support training of the more traditional problem solving tasks normally
approached using conventional instructional systems design strategies and

CA1. It is the revolutionary aspects that make actual design and
implementation of such systems more complex than might be expected

initially.

The following paper describes the development and fielding of a
computer-based training system for a physically,based, skill-oriented task.

This system is referred to as the Console Operations Tutor and is unique
for several reasons. First, an Al-based approach was used in the design

and implementation of the system, yet the problem solving domain to be
trained, namely a high performance, skill-oriented task, has more

traditionally been approached using conventional CAl. Furthermore, the

goal of system development was not so much to generate a tutoring system

for training a set of students targeted for a specific job slot, but rather
to develop a research tool for-_investlgating whether or not the area of

intelligent tutoring systems is an effective means of training a particular
class of high performance skills. Effectiveness is defined as lower cost,
shorter tlme-to-train, and longer retention of the skill. Results of this

research will provide direction to individuals in a position to define
training needs and to individuals involved in designing and implementing

training systems.
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2 DEVELOPMENT OF AN ITS FOR A HIGH PERFORMANCE TASK

The intelligent tutoring system arena is a research area owned, to
some extent, by both the psychology and the computer science fields. It is

a meeting point for educational/learning theory in humans and design and
implementation of complex computer software that exhibits intelligent
behavior. As a result, the design and development of intelligent tutoring

systems is a highly interdisciplinary endeavor. Top level design issues

such as characterization of the knowledge to be taught and the appropriate

approach or approaches to teaching this knowledge require an understanding
of psychology, education, computer science, human factors, and the subject
matter domain.

A standard accepted architecture for an ITS is presented in Figure I.

The major modules include a expert model, an instructional expert, a
student model, and an intelligent interface. Though earlier ITS efforts
tried to develop these major modules separately, experience has shown that

the knowledge contained in these modules is highly interrelated and that

performing each of the functions of an ITS requires knowledge available in
more than one module at a time. For example, instructional knowledge tends
to be embodied in the student model and intelligent interface, as well as

in the instructional module. Domain expertise resides in the student

interface and the expert model, which may together provide a simulation

facility.
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STUDENT
INTERFACE

STUDENT
MODEL

EXPERT
MODEL

INSTRUCTIONALMODULE

w

!

Figure 1: An Architecture for an Intelligent

Tutoring System

From a software development perspective, each of the major modules is

fairly complicated in its own right, and their inherent interrelationships
complicate ITS development further. Also, the kind of knowledge that must
be encoded can be quite complex. From a psychology perspective, issues in
education and learning remain open research topics and what constitutes

effective teaching for a domain is not always fully understood. But, this
kind of knowledge must be used as the foundation of the instructional

module for any effective ITS, and it essentially constitutes the design and

implementation of an expert system for teaching the particular domain.

A further complication in ITS development is that domain expertise of
the appropriate kind and level for teaching must be implemented in the
expert model to be used by the instructional portion of the system for

training. This constitutes the design and implementation of a specialized
knowledge-based system that contains the knowledge and problem solving
skills that must be taught to the student. The development of an ITS is

equivalent to the development of several very different expert systems that
all must work together, requiring extensive effort on the part of experts
from all of the fields concerned.

As a result of this dual nature of intelligent tutoring systems, the

following sections discuss the Console Operations Tutor from two different

perspectives. The first is from the psychology and education perspective
and addresses the instructional model used to drive the system. The second

is the from the computer science and artificial intelligence perspective,
which deals with the software design used to implement the tutoring system.
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2.1 An Instructional Strategy For Teaching High Performance Skills

Human performance in almost any cognitive or motor skill shows

profound changes with practice. The law of practice is ubiquitous in

cognitive performance domains (Newell and Rosenbloom, 1981). Consider the

changes that occur while learning to fly an aircraft, type, play a musical

instrument, read, or play tennis. At first, effort and attention must be

devoted to every movement or minor decision. At this stage, performance is

slow and error prone. Eventually, complex tasks can be carried out with

little attention, and performance is quite rapid and accurate. For

example, in aircraft control, the novice may have difficulty just keeping

the aircraft on the proper heading. However, the expert can fly complex

aircraft formation maneuvers while performing a simultaneous digit

cancelling task (Colle and DeMaio, 1978).

There are other examples of skills for which performance does not

increase with practice. For example, measures of short term memory

capacity such as memory scanning rate for comparing random symbols

(Kristofferson, 1972) or working memory capacity (Chase and Ericson, 1981)

are insensitive to practice. The automatic/controlled processing framework

(Schneider and Shiffrin, 1977; Shiffrin and Schneider 1977) provides a tool

for distinguishing between trainable and untrainable skills.

The framework posits two qualitatively different forms of processing

that underlie human performance. Automatic processing is fast, parallel,

fairly effortless, not limited by short term memory capacity, not under

direct subject control, and is used in performing well-developed skilled

behaviors. This mode of processing develops when subjects perform in a

consistent manner over many trials. Controlled processing is slow,

effortful, cognitive capacity-llmited, subject-controlled, and is used to

deal with novel, inconsistent, or poorly learned information. This mode of

processing is expected at the beginning of practice on any novel task. In

this framework, trainable skills are trainable because they involve

components that can be automatized. Automatized components are executed

rapidly, reliably, and with little effort, freeing capacity for performing

other non-automatic task components.

In designing training procedures for procedural skills, three

important findings from the automatic/controlled processing framework
should be considered. The first centers on the distinction between

consistent practice and varied (or inconsistent) practice. Consistent

practice produces substantial improvements in performance as automatic

processing develops (e.g., 98Z reduction in visual search comparison rates,
Fisk and Schneider, 1983). Varied practice uses only controlled processing

and produces little improvement in performance (e.g., no change in letter

search performance over 4 months of training, Shiffrin and Schneider,

1977). The second finding centers on the amount of effort required to

perform automatic processing tasks. Consistent practice greatly reduces

the amount of effort required to perform a task, allowing controlled

processing to be allocated to another task. When subjects have already

developed automatic processes to perform one task, they can learn to
time-share another task with little or no deficit. After 20 hours of

consistent practice in two search tasks, subjects were able to perform both

tasks simultaneously nearly as well as they could perform each separately
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(Fisk and Schneider, 1983). The third finding is that automatized
performance is far more reliable under stress (see Hancock and Pierce,

1984) than non-automatlzed performance. These findings indicate that a
training program that includes consistent trainilng for a skill will

provide performance that is resistant to degredation from_oncurrent tasks
or an individual's emotional state.

According to a commonly accepted model of skill learning (Anderson,
1983), skill acquisition can be seen as a progression that begins with the

encoding of declarative (factual) knowledge, continues with learning of

procedural (action-centered) knowledge/skill, and with sufficient practice
leads to the acquisition of automatic (cognitlvely automatized) skill.

That is, skills are initially acquired as declarative knowledge, the

knowledge is then procedurallzed into 'action recipes', and these action
recipes finally become cognitlvely automatized.

Progression through the three stages of skill acquisition can be

monitored with three classes of performance measures: accuracy, speed, and
resource load. Early on, during declarative knowledge acquisition, task

accuracy improves rapidly to some asymptotic level. Next, during

procedural knowledge/skill acquisition, task latency gradually declines to
some limiting level. Finally, attentional resource requirements for the

target task begin to shrink. This reduction in attentional resource
requirement is measured by having the trainee perform a carefully-designed

secondary task while concurrently performing the target task. When the
trainee is capable of performing both tasks concurrently without

decrementing performance latency or accuracy, the target task is said to be
automatized. Figure 2 shows an idealized strip-chart representation of the

three performance measures as they change vlth practice.

DIIQLA.qJ_IVII
KNOWI.I[DaE

PIWGEDUHAL8KILl.

PERFORMANClE
TIME

ATTENTIONAL t
RESOURCtE
REQUIRED

AU_
IIKII.L

TIME

Figure 2: Accuracy, Speed, and Resource Load
Measures of Automatized Skills
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2.2 Overvtev Of The Instructional Strategy Used In The Console Operations
Tutor

Our instructional strategy capitalizes On these hallmarks of high

performance skill acquisition. Early in training, we focus on subjects
learning accurate declarative knowledge, without regard to peformance

speed. After the student has reached a desired level of accuracy, the
focus shifts to performance speed. When the student has reached a desired

level of performance speed while still maintaining accuracy, the focus
shifts to performance automaticity. Table i summarizes the relationship

between the sequential instructional approaches implemented in the tutor
and the knowledge/skill types.

The static overview phase begins with a guided tour of the system. It
starts at a large grain, detailing what major systems or groups of systems

exist. I_ works its way down to a finer level of detail until all relevant
entities have been learned. At each level of detail, systems or groups of

systems are highlighted while the trainee is told what the system is and
what its functions are. The static overview is terminated vlth a

recognition test.

In the procedural instruction phases, the trainee is taught the

procedures in three passes. In the first pass (general procedure), the
trainee is shown the procedures and the various steps are explained. In

the second pass (guided example), the student is required only to perform
the procedure in the correct order. The software coach prompts the student

for the next step until the procedure is learned. When the trainee can do
the procedure in the correct Orderbn-a criteriofi_ nuiber of consecutive

occasions without prompting, s/he proceeds to speed training. In speed
training (unguided example), the trainee's latency is monitored, and the

trainee is given feedback on their speed.

In automatlcity training (automated example), the system uses a
secondary task to enhance and diagnose cognitive automaticity. In the
secondary task, the student hears a series of tones and is told, for

example, on a given trial to respond in one manner If s/he hears two shorts
followed by a long and in another manner if s/he hears two longs followed

by a short. The goal of automaticity training is to have the trainee be
able to perform the primary task (the procedure) in the presence of a

secondary task, with no performance decrement on the primary task while
maintaining accurate performance on the secondary task.

Instructional Approach Phases Resulting Knowledge/Skill
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Static overview Knowledge

General Procedure-Oriented Knowledge

Gulded-Example Exercises

Unguided-Example Exercises

Automated-Example Exercises

Declarative Knowledge

Procedural Knowledge

Procedural Knowledge/Skill

Procedural Skill

Automatized Skill

Table h Instructional Approaches and Resulting Knowledge/SkiU Type_
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This training process moves the student gradually through the various

phases of skill development. How long a student might spend at any given

level of training is, of course, unknown. It depends to some degree on the

difficulty of the domain as well as the individual student's capabilities.

In the last three phases of training, where skill acquisition is taking

place, no set number of trials, level of accuracy, or rate of performance

improvement is predetermined by the instructional module of the ITS. These

vary based on student aptitude and the domain complexity. When to move on

to the next level of training versus when to remain at the same level or

even backup and remediate, is based on the individual student's

performance. Some students may never perform as well on the task as other
students.

For the tutoring system to be intelligent, it must be capable of

recognizing when a student has "peaked" on a particular training phase.

The goal is to determine how skillful the student is based on actual

performance, not on how many times they have done the procedure. This

requires a decision on how accurate is accurate enough and how fast is fast

enough at each level of training to indicate that the student has acquired

a proficiency at that level and is ready to move on to the next level of

training. These are issues in which AI-based techniques provide the

training system with the knowledge to make these decisions on a

case-by-case basis, thus moving toward a more adaptive, individually

responsive, and intelligent tutoring system.

2.3 The AI-Based Design For A Tutoring System To Teach High Performance
Skills

From an AI perspective, several issues arise concerning how various

types of knowledge should be represented in the system and how to provide

as general a training tool as possible to serve both as a psychological

research tool and a viable training system (see Fink, in press). The

tutoring system was initially broken down into the major components of an

ITS, in order to simplify the design process. The breakdown organized

questions about design into four major categories corresponding to the four

major components of the system. The user interface provided a 2-D mock-up

of the console and simulated console interactions through a mouse. Further

details of this portion of the system are provided in Section 3.2, where

interaction with the tutor is described. The instructional strategy

described above was implemented in a general way so that additional

curriculum could be added, if desired. The expertise within the domain,

namely MSK manipulation, is highly procedural and physically-oriented. It

is not the sort of expertise normally represented to a computer in an

intelligent system, thus a general representation scheme was developed to

handle a curriculum for teaching a high performance task and

procedure-oriented expertise. From these two representations a student

model was developed. The instructional module and the expert and student
models are described below.

If the training domain consists of only one specific task to be

trained, the five phases of high performance training described in the

previous section are easily represented as a directed graph (see Figure

v
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3A). In this representation, leaf nodes correspond to the five phases of

skill acquisition, and higher level nodes govern the order in which the

training progresses or remediates. Traversing the ar_s represents

advancement to the next training phase or remediation to a previous phase,

depending on the direction.

The console operations domain consists of multiple related tasks, each

of which the student must learn to automaticity. In this domain some

training phases apply to several or all of the tasks at once, represented

by a single leaf node (or lesson) for that training phase (as in Figure

3A). In other phases, training is more effective for one task at a time,

represented by multiple leaf nodes for a given phase, one for each specific

task. This is shown in Figure 3B, where phases 2 and 3 are split over

several lessons, each of which concentrates on training a specific level of

learning for one specific task.

In general, training progresses in a left-to-right, depth-first manner

through the training tree. This training tree defines the curriculum for

the skill set. To fully specify the training order for a domain which

comprises sev@ral related tasks, it Is useful to divide all non-leaf nodes
in the tree into two types: sequence nodes and selection nodes. The use

of sequence versus selection nodes provides a means of distinguishing

between dependent and independent tasks in a training sequence. This is

particularly helpful when trying to determine on what item(s) remediation

should take place when a student is having difficulty. Leaf nodes in this

training tree represent lesson types, such as a static overview or a set of

exercises, that will train a particular skill. They refer to structures in

the expert model of the tutoring system. This training tree paradigm

provides a very general way to represent a curriculum for teaching a

specific task or set of tasks.

Sequence nodes (those not marked with black diamonds in Figure 3)

cause the training to progress in a sequential manner from their leftmost

child node to their rightmost child node. If remediation is indicated

While training is at a child of a sequence node, this remedlation can be

thought of as a traversal up through the parent node and down to the

closest sibling to the left. Thus, the term "sequence" indicates that the

items to be taught have a temporal relationship in the sense that the ones

appearing further to the right in the training tree depend directly on the

skills acquired in those appearing to their left.

While sequence nodes govern the advancement and remediation of a

student between the five training phases, selection nodes are necessary to

control the progress of the student through the training of independent

tasks. Selection nodes (marked with black diamonds in the diagram in

Figure 3) have child nodes which correspond to independent tasks to be

learned. Thus, these nodes are used to represent tasks that are logically

independent of one another. No task below a selection node depends upon

any other task appearing below that selection node. These nodes behave

differently depending on whether or not the current level of training is at

the "training frontier," the farthest point in the training traversal that

this particular student has ever reached. If the current training level is

at the frontier, the children of a selection node are visited in order from

left to right, just as with a sequence node. However, if one of these

children causes a remediation, then the target of remediation should not be
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Figure 3: A Sin_e Task Trained Through _ Five Phases to Autornaticity (A)
and a Multi-Task Domain Where Two Independent Subtasks Are Trained

Separately in the Genera.l-Procedure and Guided-Examples Phases (]3)
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the previous child of the selection node parent, as thls child represents a

task vhlch is independent of the one with which the student is having

difficulty. The correct target of this remediatlon is the previous child

node of the nearest sequence node in a traversal up the tree from the

child. For example, in Figure 3B, if node task-2-procedure causes a

remediation, then node static-overvlew should be the one that is revisited.

When the student has again shown mastery of statlc-overview, then the

training must return to task-2-procedure, without re-traverslng the

task-l-procedure path.

Nodes which are to the right of a selection node in the training tree

are cumulative training nodes, presenting exercises for all of the tasks

which have been individually trained. Such cumulative nodes must keep

track of which tasks the student is having trouble with, so that if

remediation is necessary, it will be to the appropriate task within the

selection node. For example, the speed node in Figure 3B should monitor

the student's performance on task 1 and task 2 separately, and If the

student has trouble with task i, the remediatlon target should be

task-l-gulded-examples. Selection nodes, then, serve two purposes. If the

training is currently at the frontier, they cause the training to proceed

through the tasks which their children represent in order. If the student

requires remediation, selection nodes prevent the training from

re-traversing paths of tasks which the student has already mastered that

are independent of the task with which the student is currently having

problems.

Another issue in developing intelligent tutoring systems for high

performance domains is how to divide the phases among specific tasks to be

trained. This largely depends on how much overlap of knowledge the tasks

contain. For example, in the medical diagnosis domain a student could

reach automaticity in taking blood pressure, and not know the first thing

about drawing blood samples. The two tasks are very independent of one

another; a tree representation might show nodes for all five training

phases under each task node. On the other extreme, in the domain of

learning to play a piano, one beginning piece requires essentially the same

skills as another. The task for playing each piece might not be

differentiated at all in a training tree representation. They would merely

be different exercises under the same lesson node. Many high performance

domains are made up of tasks which are similar enough to share some

training phases, but different enough to benefit from some concentrated

training on each task.

The result of this design is the use of the classic tree structure

representation as a means of formalizing and codifying the curriculum to be

taught for a given skill or skill set. Implementation of the tutoring

system then involves the design of an interpreter that can utilize, or

"parse", the tree-represented curriculum In order to drive the

individualized training sequence for a given student. Thus, thls is a very

general representation scheme In which a wide variety of curriculums aimed

at training a high performance skill can be represented.

The expert model for a set of high performance tasks must consist of a

means for representing the procedures to be performed and a way of

monitoring accuracy and speed. In the automaticity phase of training,

accuracy and speed must be monitored for the performance of the primary
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task itself, such as HSK manipulation, as well as for performance on the

secondary task, such as beep pattern response. The expert model in this

ITS design represents an elaboration at each leaf node of the training tree

that provides the information concerning expert level performance in the

task to be trained at that point in the curriculum. Because the tree

representation is so general, and can naturally handle procedural type

knowledge, another modified tree structure is used to represent the

expertise of actually performing the task or tasks to be trained. The tree

structure is used for a hierarchical, as well as ordered, representation of

the task, providing structure to the sequence of steps which are

represented at the leaf nodes. (see Figure 4). At each level the nodes

can be ordered or unordered, depending on the attributes of the procedure

to be taught. In addition to providing the expertise needed by the

tutoring system to monitor student performance during a training exercise,

these procedural structures also provide the expertise needed to randomly

generate exercises for the student of the appropriate type at the

appropriate time in the training sequence.

Providing a means of representing a student's capabilities is the last

major representational and design issue. Student progress consists of

working through the training tree and performing adequately on the various

tasks appearing at each leaf node. Because the training domain is largely

a physlcally-oriented task with little cognitive load, there is little need

£or representing misconceptions or bugs. Thus, an overlay model is

sufficient. As a result, the same formalism, namely the training tree and

the procedural trees, is used to represent the student model, with

annotations to indicate status and performance levels on the various phases

of training. Evaluating student performance then becomes a search through

the tree representing the procedural expertise to compare a student's

behavior with that of the expert.

Manual Select graybeard

FIIKhc Select DDD Format Select

f_ctlou code
thumb_el'1
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Figure 4: Overview of the DISPLAY REQUEST Procedure Using the MSK
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3 T_E CONSOLE OPERATIONS TUTOR

The Console Operations Tutor was developed primarily as a research

tool for studying the training of high performance skills. However, the
system was designed and implemented as though it were to be fielded for

training actual shuttle flight controllers for Mission Control at Johnson
Space Center. As indicated in the previous discussion, the design of the

system was such that a tutoring shell for high performance tasks was

developed, for which a training tree was implemented to indicate the
desired curriculum, and procedure trees were defined to indicate the tasks

to be performed. The high performance task targeted in the Console

Operations Tutor was manipulation of the Manual Select Keyboard (MSK).
Details of the problem solving domain and the tutor itself are provided in
the following sections.

3.1 Space Shuttle Console Operations

Mission Control Center (MCC) at Johnson Space Center (JSC) in Houston,

Texas consists of a number of rooms full of computers, video screens,

communication networks, large complex consoles, and people, all oriented
towards the task of monitoring and controlling shuttle system operations

during a flight. A flight controller's job is to monitor a particular
portion of the shuttle system through one or more of the complex consoles,
using computers and voice communication systems as necessary. An example
of a Mission Control Center console for shuttle flight control, namely the

front-room propulsion console, is presented in Figure 5. The MCC consoles
vary somewhat from one flight function to another, but they generally
consist of:

o one or more video displays (called VDT screens)

o numerous sets of indicator lights, referred to as Display Decoder Drive

Event Lights (called DDD lights)

various manual entry devices consisting of numeric thumbwheels, lever

switches, and push button indicators including the voice keyset, the
manual select keyboard (MSK), the summary message enable keyboard

(SMEK), and the display request keyboard (DRK)

as veil as one or more other panels for displaying Mission and Greenwich
Mean Time. These consoles may also be attached to one or more strip chart

recorders for recording sets of analog signals.

In order to become proficient at operating such

controllers must learn how to perform such tasks as

consoles, flight

o formatting the various DDD light panels using the MSK

o selecting, displaying, and reading a variety of video display

using the MSK, SMEK, and DRK

formats
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o selecting and listening to various voice loops using the voice keyset

as well as many others. They must learn to operate these consoles in an

automatic manner because such operations are only a means for achieving the

goal of ensuring the safe and correct operation of a particular shuttle

system, such as the propulsion system, during a space shuttle mission.

Should a situation arise where data must be accessed, analyzed, and

interpreted, the flight controller must be capable of quickly and

effectively accessing the needed data from various video displays and DDD

lights without specific thought as to how to manipulate the various

keyboards. His/her conscious, cognitive thoughts are too busy diagnosing

the situation to be concerned wlth how to get the data. Thus, console

operations can be classified as a high performance task.

The first phase of work on the Console Operations Tutor has centered

around training the operation of the Manual Select Keyboard (MSK). This is

the keyboard that flight controllers use to initialize the console for the

ascent, orbit, and descent phases of a mission. Initialization requires

formatting all DDD light panels, selecting several video displays to get

information concerning general system status, and selecting various voice

loops to listen to monologues and dialogues. Eventually the tutoring

system could be expanded to include training on all of the keyboards of a

console, as well as a general console overview. Figure 6 provides details

of the five-phase training curriculum developed for training the MSK.

.=.

Figure 6: The Training Tree for the Manual Select Keyboard (MSK)
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The MSK can be operated in one of five modes. These five modes are
indicated by the five push button indicators that appear at the upper right

of the panel. The functions vary somewhat from console to console.
Operation of the MSK involves first selecting one of these five functions.
Selection of the function then defines how the numbers on the thumbwheel

and lever switches at the center left of the MSK are interpreted by the

Mission Control Computer. These numbers can represent flight numbers, VDT

screen numbers, DDD light formats, or codes for performing specific actions

(such as reset). Thus, though the manipulation of the MSK only consists of
between four and six steps, knowing what buttons to push and how to set the

numbers and data types can become quite complex, and difficult to remember.

Currently, flight controllers are trained to run a console through a
set of training manuals and workbooks. Then, through a type of
apprenticeship, they begin participating in mission simulations, first as
observers and then as actual participants. The cognitive load in this

arena is extremely high. Individuals are usually degreed in an engineering
field related to the system they monitor, and an individual must be trained

and certified for each console position s/he runs. As a result, most

flight controllers stay within in a single discipline, such as propulsion
or navigation. Because there is so much to learn, little time is spent

training the task of actually manipulating the console. The skill is
acquired through practice during simulations on the actual equipment while
other cognltlvely-orlented tasks are the main issue. Any means of

providing cost effective, easily accessible training on the skill of actual
console manipulation would help stream-line the training-process for

shuttle flight controllers.

3.2 Training Using The Console Operations Tutor

The Console Operations Tutor is implemented in C, CLIPS, and GPR on a

color Apollo Domain 4000. These tools were selected for pragmatic reasons.
A set of hardware and software tools had to be selected that was readily

available to all parties involved in the effort, yet powerful enough to

support the CPU- and Interface-intensive application. A PC-based system
under DOS would have been ideal from the perspective of system

availability. However, it would not have been powerful enough for the

application. The Apollo Domain provided one of the least expensive color
platforms available at the start of the project in 1988. Though little
software was available on that platform at that time to simplify interface

and intelligent system development, the speed and resdurce requirements
were such that only lower level tools were under consideration anyway. GPR
is the basic graphics primitives provided on the Apollo and CLIPS (C

Language Integrated Production System) is a C-based, efficient,
knowledge-based system development tool designed and implemented at

NASA/JSC. Implementation of the Console Operations Tutor began in mid-1988
and the system was delivered in final form to the Armstrong Laboratory
Human Resources Directorate and to NASA/JSC in mid-1990.

The display for the tutoring system is organized into five major

areas, as illustrated in Figure 7. Across the top third of the screen is a

complete graphic representation of the entire console. This provides the
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student with an overall layout and organization of the console. The lower

left half of the display provides an area where one of the panels from the

console can be expanded to provide further detail. The figure shows the
HSK panel. The lower center of the screen provides an area for

mouse-sensltive buttons used by the student to respdnd to questions

generated by the tutoring system. The lover right half of the screen

provides the text interface where the tutor can present Informatlon to the

student. A top portion of thls area, labeled "GOAL" Is where exercises are

presented to the student. The bottom portion is used for prompting the

student and providing feedback.
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The graphic display of the console is mouse-sensitive. Under certain
conditions it allows a student to select panels by clicking over them with

the mouse to blow them up in the lower left window of the display. When a

panel is expanded and displayed in the lower left window, it too is
mouse-sensitive. A student can manipulate it by clicking the mouse over
its components, thus incrementing or decrementing a thumbwheel counter,

turning a push button indicator on or off, or just getting a display of the
text written on the object. In this way, a large portion of the console
functionality is simulated graphically and a student can gain experience in

performing console operations through these simulated manipulations. The
simulation provides high cognitive fidelity, but lower physical fidelity.

Training on the use of the MSK proceeds through the five phases

described previously. The first phase of training on the MSK, referred to
as "MSK static Overview" (see Figure 6), provides an overview of the MSK

layout and structure. The MSK panel is expanded in the lower left window
on the screen and the system steps through each of its functional

components, highlighting them on the graphics display and describing them
with text in the lower right window. This particular phase is illustrated

in Figure 7, where the mode select push button indicators are highlighted

in the graphics on the left and their description appears in the text on
the right. A student can move forward and back at hls/her own pace through
this portion of the tutorial. At the end, the student must pass an
identification test where the student is asked to click over the various

components of the console to indicate his/her response to the tutoring
system's questions in order to proceed to the next phase of training.
Based on the score, the student is allowed to continue to the next phase or

required to review the material.

Manipulation of the MSK can take place in one of five modes, selected

with the push button indicators in the upper right corner of the MSK panel.
The procedure for manipulating the MSK varies depending on the mode
selected, so the student's training consists of five general procedures to
be mastered. Because all of the objects on the MSK panel remain the same

for each procedure, the first static overview phase applies to all

procedures. However, at the procedural overview phase, the training tree
branches to allow the student to concentrate on learning one of the

procedures at a time. A task selection node in the traininig tree, called
"MSK modes," is used to select the mode of operation and phases 2 and 3 of

training are then subsumed under each independent task nodes in the tree

(see Figure 6).

As a result, in the second phase of training, an overview of the

procedural process for manipulating the MSK in one single mode, for example
display request mode, is given. This is done in a manner similar to the
MSK overview. Components are highlighted in procedural order and

explanations about each step of the procedure are provided. For example,
to request a particular video display to appear in the right monitor of the

console, the push button indicator with DISPLAY REOUEST written on it must

be pushed, the number of the video display entered on the right four
thumbwheels, and the RIGHT MONITOR ENTER push button indicator pressed in

the lower right corner of the MSK. A number of other steps must be

performed as well, but these are the key steps. The order of all steps
does not matter, with the exception that pressing the monitor enter push
button indicator must be done last. Thus, the procedure could be
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represented as in Figure 4, where five actions comprise an unordered group
that constitutes the first step, called "set-up," and the monitor enter

action comprises a second step, called "execute." Of course, some sequences
are more logical than others and the current system enforces a specific

order for performing these actions. In order to move on to the next phase

of training, the student must identify each step in the correct sequence.

The third phase of the training, referred to as "guided examples,"
again concentrates on manipulation of the MSK panel in the same mode as was

Just presented. Specific examples of the procedure are generated that the

system solves as a demonstration for the student. For two of the modes,
AES format select and DDD format select, there are multiple specific tasks

to be taught. For example, selecting a DDD format and de-selecting a DDD
format involve manipulating the same objects in the MSK In the same order,

but in slightly different ways. Thus, for these modes the phase three
demonstration and practice exercises are repeated for each specific task in

sequence (see Figure 6).

The student performs the assigned exercise by manipulating the mouse
over the appropriate components of the MSK in the correct order to perform

the requested operation. For example, in the guided example phase of
training the system may request that the student cause the video display
number 12 to appear in the left display monitor. The system will prompt

the student at each step and verify its correctness before moving on to the
next step. If an error occurs, rules based on the error that the student

has just made and the student's history of errors are used to coach the

student to perform the procedure correctly. Satisfactory performance in
this phase of training is based mainly on accuracy, but speed is also
considered. When a student has consistently performed the assigned

exercises with complete accuracy and the speed of performance has more or
less plateaued, the system allows the student to move on to the next phase

of training.

The fourth phase of training involves working on speed and is
therefore referred to as "unguided" and "speed" examples. In this phase,

the tutoring system no longer guides or coaches the student through the
exercises. Instead, the system simply presents an exercise, again

concentrating on a single mode of HSK operation at a time, and the student
must manipulate the HSK appropriately with the mouse to achieve the

requested action. If phase three was repeated for several specific tasks,
then thls phase acts as a cumulative testing phase, randomly presenting
exercises for all of the tasks which the student has learned within this

mode of HSK operation. Then, if a student begins making mistakes on a
particular type of task, the appropriate HSK mode is selected in the

training tree, through the selection node, for remediation.

The static procedure, guided example, and unguided example sequence of

phases is repeated for each of the five modes of MSK operation (see Figure

6, the "gen proc", "guided," and "unguided" leaf nodes). The fourth phase

of the training wraps up with a cumulative lesson, called "msk speed
examples," where tasks from all modes are given in random order for the

student to practice. The system at this point watches which modes of MSK

operation the student is having trouble with so that, if remediation is
necessary, it will be to the appropriate mode. Based on consistently
performing with complete accuracy and reaching a point where speed is no
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longer improving signiflcant]y, the system then allows the student to move
on to the final phase of the training.

The fifth and final phase of training is a repeat of the fourth phase

only with a secondary task that must be performed simultaneously by the
student while doing the assigned exercise. While performing a random

selection of MSK operation, the student must also acknowledge certain

patterns of beeps by hitting the appropriate function key. The system
assumes that the student has successfully automatized the MSK manipulation
process when the accuracy in performing both tasks has reached one hundred

percent and the speed of performing the assigned exercise and responding to

the beeps has reached a peak for that particular student.

It is important to note that during the final three phases of
training, where skill is being acquired and tested, no predetermined number
of trials is used to determine whether or not the student should move on.

Advancement to the next phase in training depends on the particular

student's performance. Though accuracy is required to be one hundred
percent correct, ultimate speed can vary based on the student. The system
determines if speed is reaching the individual's asymptote by comparing
speeds on sequential tasks and trends of speeds over time in order to

decide when to move on. The decision to backup and review material is

based on how much difficulty the student is having attaining the required
accuracy and, to a lesser extent, speed. Remediatlon causes selective

backup based on student errors and can even backup all the way to the start
of the training program if necessary. In this way the system can be used
to refresh the memories of individuals who have been interrupted in their
training for a period of time, as well as those who are seeing the material
for the first time.

4 FIELDING THE CONSOLE OPERATIONS TUTOR

The fielding of the Console Operations Tutor differed from that of

most other Al-based tutoring systems due to the fact that it was delivered

to a psychology research laboratory instead of to an actual training
environment. The only "users" who had to be satisfied were the
psychologists who would be using the system to run experiments and whose

goals for the system were, therefore, much different from those of an
actual training environment. Thus, the key issues in a successful fielding

in the case of the Console Operations Tutor were not so much involved with
fitting the system into an existing organization/culture, getting it
accepted, and ensuring that it met the predeflned training goals, but

rather that the system was robust and general enough to handle the changing
research goals of the lab. The system had to be capable of holding-up

under a stream of non-computer-oriented subjects and of providing the
researchers with the data needed to answer their research questions. The

following sections describe additional tools and systems provided in

fielding the Conole Operations Tutor, and some of the experience gained to

date with using the system as a research tool for studying effective
training approaches for high performance skills.

Southwest Research Institute made final delivery of the Console
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Operations Tutor to-the Armstrong Laboratory Human Resources Directorate at

Brooks Air Force Base and to NASA/Johnson Space Center in June of 1990.

Though the primary reason for developing the tutoring system was to perform

psychological research at HAD, the tutor had been developed such that it

could be used for actual training at JSC. In fact, a preliminary study at

JSC indicates that novice console operators have a high degree of

acceptance for the system.

4.1 Console Operations Tutor Experimental Set-Up

The experimental portion of the console operations tutoring system

consists of several major components. These are the Console Operations

Tutor itself, which is an intelligent tutoring system designed to train the

task of MSK manipulation to automaticity, a set of parameters for altering

certain attributes to support psychological exerimentatlon, and a 3-D

mock-up of a console with a fully-functional MSK panel that is an exact

duplicate of the actual panel found on the consoles in Mission Control.

This set-up provides a full array of tools for performing research in high

performance skill acquisition, skill transfer, and skill retention.

The Console Operations Tutor contains two facilities that allow the

psychologist to manipulate relevant paramenters to study training effects.

The first facility allows a researcher to manipulate instructional

variables to alter the training between experimental groups and is referred

to as the experimental facility. The second facility, the performance

facility, collects student performance data for later statistical analysis.

Using the experimental facility, researchers can define the value of

I0 instructional parameters. The first three parameters dictate the speed

at which a subject must perform in order to be eligible to proceed through

the levels of training. The next seven paramters determine the difficulty

of the secondary task in automaticity training. The final two parameters

determine the phases of training to which the student will be exposed. The

following list describes the iO parameters.

w

w

O Maximum Speed - the slowest speed at which a student must be performing

consistently to avoid remediation.

o Speed Criterion - the criterion speed that students must reach during
the speed phase of training in order to advance to automted training.

o Automate Criterion - the criterion speed that students must reach
during the automated phase of training in order to complete training.

Number of Beep Patterns - the number of alternative beep patterns

presented to the student for the secondary task in the automated phase

of training.

Number of Beeps in a Pattern - length of the beep pattern in the

secondary task.

=
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o Number of Target Patterns - the number of beep patterns that the
student must recognize and respond to on any given exercise on the

secondary task in automated training.

o Percentage of Target Beep Patterns - the frequency with which the
system provides a target versus a distractor beep pattern to the

student on the secondary task.

o Latency between Beep Patterns - the amount of time that elapses between
beep patterns during the secondary task.

o Speed Exercise Types - the experimenter may elect to have the student
perform any, or all of the MSK operations in the speed phase of

trainlng.

o Automated Exercise Types - the experimenter may elect to have the
student perform any or all of the MSK operations in the automated phase

of training_ :
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The:pe:rf0rmance_facility monitors=the ......student;s speed and accuracy

during the training exercises andwrites t_ese indices to a performance
file. During each exercise in the guided, ungulded/speeded, and automated
phases of training, the system monitors the student's level of accuracy.

The percentage of accurate steps is written to the performance file. For
the unguided/speeded and automated phases of training, the system also
collects the speed at which the exercise was performed and writes this

measure to the performance file. Finally, during the automated phase of
training, the system collects and writes the student's accuracy and speed

on the secondary task.

......0ne 0f_the:_goais of_=this=endeav0r =was to examine the efficacy of

computer-based, high performance skill training by gauging how well a
learned skill transfers from the tutor to actual console operations.

Because Of thls Eoai, a 3-D mockup of the propulsion console was
constructed. The mockup is driven by C and CLIPS s0ft_re ....running on a

386-based machine. This software presents a problem and the student

completes the corresponding MSK operation on a full-fidelity, 3-D mock-up
of the MSK panel. The software monitors the student's speed and accuracy
and writes it to a file. No feedback is provided to the student since this

portion of the tutoring system experimental set-up is concerned with

testing performance, not with improving it. The experimenter has the
ability to select which of the five MSK operations should be included in
the student's test. Vith this experimental set-up, all of the training and

research performed at HRD can be done independent of the availability of
consoles in Mission Control at Johnson Space Center)l:; _

The tutoring system delivered to Johnson Space Center consisted only

of the Console Operations Tutor, with the experimental and performance
facilities. No 3-D mock-up was delivered since the goals of the set-up at

JSC were more to study the acceptance of this training approach by the

flight controllers, rather than the more fundamental question of high

performance skill acquisftion.
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4.2 Initial Results Of The Research Project

=
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The flexibility designed into the Console Operations Tutor is intended
to support a series of empirical investigations. The general goal of these

investigations is to develop a replicable, fully automated approach to
training high-performance tasks. At this time, the first experiment being

run at the Armstrong Laboratory Human Resources Directorate is well under

way. In the experiment, subjects are trained on the console operations
tutor to one of two training criteria. One group of subjects is trained

until their accuracy and speed on the task are equivalent to an expert. A
second group is trained until they are not only as fast and accurate as an
expert, but are also able to perform the secondary task while maintaining

that speed and accuracy. That is, the second group is trained until they
have developed cognitive automaticity. After training, both groups of
subjects are tested on the 3-D mock-up of the console immediately and after

delays of 2 weeks, I month, and 2 months. The mockup has been engineered

to capture performance data during task performance.

The first goal of the initial experiment is to validate or refute the
claim that cognitively automated task performance is more reliable, less

susceptible to stress, and less susceptible to skill degradation than is
task performance which is not cognitively automated. Training time, target
task speed, accuracy, and susceptibility to negative interference will be

assessed and compared between the two groups for various time delays. The
second goal is to demonstrate that a procedure which is cognitively
automated in a simulation-based training environment will transfer to an

operational environment. Although results of this first experiment are
preliminary results are extremely encouraging. Subjects take an average of
four hours to achieve the accuracy/speed criteria, as compared to five

hours to reach the automaticity criteria. This additional hour of training

time is producing large benefits in outcome performance. These benefits
include faster and more accurate performance, and an ability to perform

under the stress of a secondary task. The complete results of this study

will be published in the near future.

Cost to develop this intelligent tutoring system was well under

$200,000. The price is nominal compared to the cost to develop a
full-fidelity, 3-D simulator to support such training. Preliminary
experimental results show effective training that transfers to the actual

device can be attained using the less expensive, 2-D intelligent tutoring
environment so much may be gained in the use of such systems by

organizations requiring high performance skill training.

In addition to the experiment run at HRD, another preliminary study

was performed at JSC to examine the issue of transfer and acceptance by

actual flight controllers. Subjects were trained on the MSK using the
Console Operations Tutor to an automated skill level. These individuals

ranged in skill on the actual MSK device from complete novice to
fully-trained and experienced flight controller. The novices trained up

quickly and found the system very helpful in developing their skill. The
already-trained and experienced flight controllers, however, had some

difficulty. Their main comment was that they knew what they needed to do,
they just had difficulty doing it because the means of doing it, namely the

mouse, was so different from the console itself. Thus, though the system
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appears to be very useful in training up On a skill that then transfers
well, it complicates the task for those already trained in the skill.

5 SUMMARYAND CONCLUSIONS

The Console Operations Tutor was designed and implemented as a

research tool to study training approaches for high performance domains.
Hlgh performance tasks are of increasing interest to organizations such as
the Air Force and NASA due to the kinds of jobs they must train.

Traditionally, training of such tasks has been ignored, meaning that it

takes place on-the-job using real equipment, or it has been a major
investment, involving the extensive use of complex, expensive, 3-D
simulators. The major research question motivating the development of the

Console Operations Tutor Is whether or not effective training of a high
performance task could take place in a inexpensive, 2-D mock-up using

"intelligence" to direct the training. Early results are very positive,
thus opening the door to a new, high-potential area of training for

intelligent tutoring systems.

The results of the initial studies also suggest that the modified

apprenticeship training strategy implemented in the Console Operations
Tutor successfully trains high performance skills. The addition of
automaticity training to the apprenticeship program, while consuming only

an additional hour of time, enhances performance and resistance to skill
degredation in the 3-D environment. These results are very encouraging for
developing low- cost training programs for a wide variety of high

performance skills.

The deployment of the Console Operations Tutor was also very

successfui. The psychologists who contracted for this specialized research
platform have received the system very positively. In fact, they have
contracted to extend the training curriculum for ground-based diagnosis of

the shuttle propulsion systems in conjunction With training on the HSK.
This new research platform viii include facilities to assess the

effectiveness of joint cognitive and high performance training. Finally,
the ratio of cost of development to perceived benefits of the system to the

sponsor is very low: the perceived benefits far outweigh the costs.

From a system development perspectiv e , this was a successful

intelligent system implementation, involving participants with a wide range
of expertise in a truly interdisciplinary effort. The intelligence in the

system centers around a tree search algorithm to diagnose student behavior,
thereby driving the instruction. The resuiting -system is essentially a
tutoring shell for hlgh performance tasks into which other curriculums and

procedures can be entered using the tree-like structures for the training
tree and the procedure trees. Intelligent tutoring systems are the

frontier of training programs in many areas, and they promise to

dramatically reduce training time and cost.
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